

New Proton Conductive Composite Materials with Co-continuous Phases Using Functionalized and Crosslinkable TFE/VDF Fluoropolymers

Serguei Lvov

The Energy Institute Electrochemical Laboratory

Mike Chung

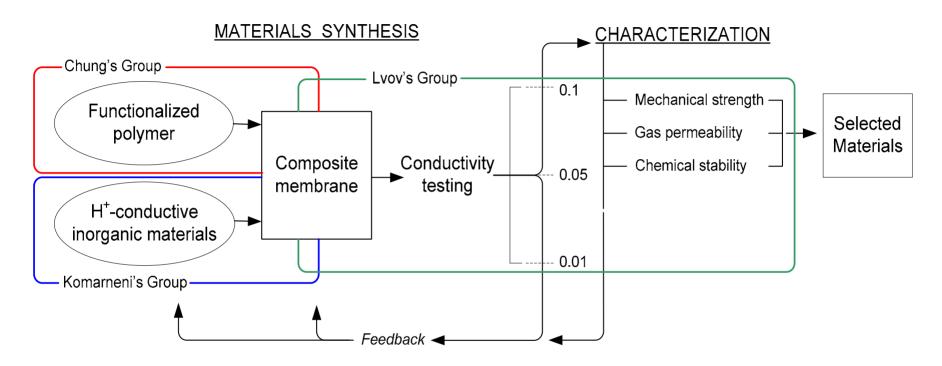
Department of Materials Science and Engineering

Sridhar Komarneni

Materials Research Institute

The Pennsylvania State University

DOE High Temperature Membrane Working Group Meeting - May 19, 2006

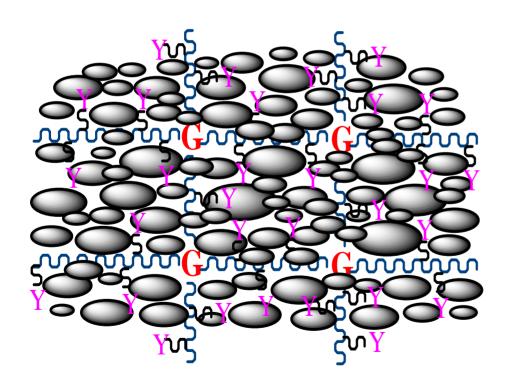


Project Objective

Develop a new composite membrane material with hydrophilic inorganic particles as a major component and TFE/VDF polymers as a matrix to be used in a PEMFC in temperature range of -20 to 120°C and relative humidity range of 25-50%.

Project Organization

Three research groups will be involved in a loop of continuous synthesis and serial testing until the final product meets the target requirements.



Approach

- We will synthesize a poly[vinylidene fluoride]-based polymer with chain—end functional groups which is highly compatible with the inorganic surfaces.
- We will synthesize a number of highly hydrophilic proton conductive inorganic materials such as structured metal phosphates, mesoporous oxides, etc.
- We will develop an approach to incorporate high loads of hydrophilic inorganic particles into the polymer.

Anticipated Structure of Inorganic/Polymer Composite

····: Teflon-segment

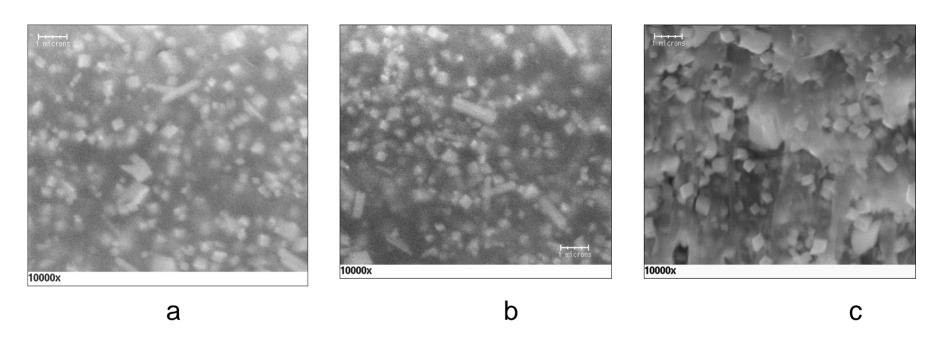
G: Crosslinker (C-Si-C or C-Si-O-Si-C)

Y: Polar functional group

: Proton-conducting material

Preliminary Studies

In our preliminary study, an inorganic/organic composite membrane containing 60% of 3-D structured H₃OZr₂(PO4)₃ and 40% of functionalized poly[vinylidene fluoride] with Si- terminal groups and Si-OH functional groups was fabricated.


T, °C	Water uptake, wt.%	
	New composite material	Nafion®
23	0.9	28
100	1.1	27

T, °C	Conductivity in Water, S/cm	
	New composite material	Nafion®
120	0.07	0.17
140	0.1	0.1

In contrast to Nafion, the composite membrane's conductivity continued to grow as temperature increased from 120 to 140°C. At 140°C, it reached the same value as conductivity of a Nafion membrane. The new membrane has a very low water uptake.

6

Preliminary Studies

SEM images of the new 60% $H_3OZr_2(PO_4)_3$ / 40% PVDF(Si) membrane: (a) and (b) show the surface on the opposite sides of the membrane and (c) is the cross-sectional image.

Based on the surface images the distribution of inorganic particles (300-500 nm in size) inside the membrane is uniform.